A bio-inspired sensor based on surfactant film and Pd nanoparticles.
نویسندگان
چکیده
A bio-inspired complex, [(bpbpmp)Fe(III)(m-OAc)(2)Cu(II)](ClO(4)), was combined with a zwitterionic surfactant (ImS3-14) stabilizing pre-formed palladium nanoparticles and coated on a glassy carbon electrode (GCE). This bio-inspired surfactant film was capable of catalyzing redox reactions of dihydroxybenzenes, thus allowing the simultaneous electrochemical quantification of CC and HQ in cigarette residue samples by square-wave voltammetry (SWV). The best experimental conditions were obtained using phosphate buffer solution (0.1 mol L(-1), pH 7.0), with 1.3 nmol of the bio-inspired complex, 0.15 μmol of the surfactant and 1.08 nmol of Pd. The best voltammetric parameters were: frequency 100 Hz, pulse amplitude 40 mV and step potential 8 mV. The limits of detection calculated from simultaneous curves were found to be 2.2 × 10(-7) and 2.1 × 10(-7) mol L(-1) for HQ and CC respectively.
منابع مشابه
Hybrid Bio-Inspired Clustering Algorithm for Energy Efficient Wireless Sensor Networks
In order to achieve the sensing, communication and processing tasks of Wireless Sensor Networks, an energy-efficient routing protocol is required to manage the dissipated energy of the network and to minimalize the traffic and the overhead during the data transmission stages. Clustering is the most common technique to balance energy consumption amongst all sensor nodes throughout the network. I...
متن کاملPhysicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
Interaction with the pulmonary surfactant film, being the first line of host defense, represents the initial bio-nano interaction in the lungs. Such interaction determines the fate of the inhaled nanoparticles and their potential therapeutic or toxicological effect. Despite considerable progress in optimizing physicochemical properties of nanoparticles for improved delivery and targeting, the m...
متن کاملLow temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor
In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...
متن کاملPalladium nanoparticle-based surface acoustic wave hydrogen sensor.
Palladium (Pd) nanoparticles (5-20 nm) are used as the sensing layer on surface acoustic wave (SAW) devices for detecting H2. The interaction with hydrogen modifies the conductivity of the Pd nanoparticle film, producing measurable changes in acoustic wave propagation, which allows for the detection of this explosive gas. The nanoparticle-based SAW sensor responds rapidly and reversibly at room...
متن کاملLow temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor
In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Analyst
دوره 138 2 شماره
صفحات -
تاریخ انتشار 2013